Waldemar Nowakowski, Tomasz Ciszewski, Zbigniew Łukasik
Uniwersytet Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu,
Wydział Transportu i Elektrotechniki

PROBABILISTYCZNA METODA DIAGNOSTYKI
SYSTEMÓW STEROWANIA RUCHEM
KOLEJOWYM

Rękopis dostarczono, maj 2019

Słowa kluczowe: systemy sterowania ruchem kolejowym, diagnostyka, metoda probabilistyczna

1. WSTĘP

Kierowanie procesami ruchowymi, w przypadku transportu kolejowego, wykonuje człowieka za pomocą określonych środków technicznych. Współczesna technika, w szczególności elektronika i informatyka, pozwala zautomatyzować coraz więcej czynności w procesie transportowym. Systemy sterowania ruchem kolejowym (srk) nie tylko mogą wspomagać człowieka w wykonywaniu określonych funkcji, ale przede wszystkim zadania swoje realizują szybciej, dokładniej i w sposób bezpieczny. Podstawową tendencją rozwojową tych systemów jest centralizacja sterowania w Lokalnych Centmach Sterowania (LCS), umożliwiająca sterowanie ruchem kolejowym z jednego miejsca. Kontrolowanie dużego obszaru sieci kolejowej stwarza możliwość nie tylko znacznie lepszej oceny sytuacji ruchowej, niż ma to miejsce w przypadku pojedynczego posterunku ruchu, ale także stanu technicznego urządzeń srk. Pomocne w tym są systemy informatyczne wspomagające proces diagno-
styczny zlokalizowane w Centrach Utrzymania i Diagnostyki (CUiD). Na rynku funkcjonują różne systemy diagnostyczne, w tym m.in.: Maintenance and Diagnostics Center (MDC) produkcji Bombardier Transportation, NetTrac 6618 Maintenance & Diagnostics Centralised System (MC) produkcji Thales, Vicos S&D produkcji Siemens, czy GDS oferowany przez czeską firmę AŽD Praha [8]. Aktualny stan badań naukowych oraz propozowane rozwiązania techniczne pokazują, że dotychczasowe metody diagnostyczne urządzeń skr są niewystarczające [5, 7]. Czołowi producenci działający w branży automatyki kolejowej oferują systemy diagnostyczne dostosowane do swoich urządzeń. Dlatego też autorzy artykułu zaproponowali własną metodę diagnostyki systemów skr. Bazuje ona na wnioskowaniu probabilistycznym, umożliwiającym lokalizowanie uszkodzeń przy braku pełnej informacji wskazującej na ich rodzaj. Badaniami objęto system samoczynnej sygnalizacji przejazdowej, który jest jednym z najczęściej stosowanych systemów skr na sieci kolejowej PKP PLK S.A.

2. METODA DIAGNOZOWANIA SYSTEMÓW SRK
WYKORZYSTUJĄCA WNIOSKOWANIE
PROBABILISTYCZNE

W ogólnym ujęciu, proces diagnozowania polega na badaniu i wnioskowaniu diagnostycznym. Badanie diagnostyczne oznacza obserwacje sygnałów diagnostycznych, związanych z obiektem diagnozowania, zawierających informacje o stanie obiektu. Wyniki badania, na ogół w postaci zbioru wartości rejestrowanych sygnałów lub przebiegu określonych zależności funkcyjnych, stanowią podstawę do wnioskowania diagnostycznego, którego celem jest ustalenie stanu obiektu.

W zaproponowanej metodzie diagnozowania można wyróżnić trzy etapy [3, 4]:

1. wybór diagnozowanych elementów systemu,
2. opracowanie sygnatur uszkodzeń,
3. opracowanie funkcji niesprawności.

Etap 1 - wybór diagnozowanych elementów systemu

Etap ten polega na dekompozycji systemu i wyborze tylko tych elementów (np. modułów lub urządzeń wchodzących w skład systemu), które ze względu na potrzebę zapewnienia bezpieczeństwa będą podlegały procedurze diagnozowania. W przypadku systemów skr mogą to być na przykład takie elementy jak: sygnalizatory, napędy, czujniki koła, itp.

Etap 2. Opracowanie sygnatur uszkodzeń

Etap ten przeprowadzany jest oddzielnie dla każdego diagnozowanego elementu systemu wybranego w wyniku analizy wykonanej w etapie 1. Zbiór wszystkich możliwych kombinacji symptomów dla danego elementu systemu można przedstawić jako

\[S = \{s(1), s(2), \ldots, s(2^J)\} \]

gdzie \(J \) – liczba symptomów.
Ze zbioru tego należy wybrać tylko te kombinacje symptomów, które związane są z powstawaniem uszkodzeń, w wyniku czego utworzony zostanie zbiór sygnatur uszkodzeń

$$V = \{ V_i : i = 1, 2, ..., I \}, \quad I < 2^I$$

(2)

Analiza symptomów, z wykorzystaniem wiedzy technicznej dotyczącej diagnozowanego systemu, pozwala więc na redukcję liczby sygnatur w wyniku eliminacji wszystkich kombinacji symptomów, które nie są związane z powstawaniem uszkodzeń.

Etap 3. Opracowanie funkcji niesprawności

Zbiór możliwych uszkodzeń, które mogą spowodować, że element systemu znajdzie się w stanie niezdatności można przedstawić jako

$$U = \{ f_k : k = 1, 2, ..., K \}$$

(3)

gdzie K – liczba możliwych uszkodzeń elementu systemu.

Następnie, dla każdej sygnatury V_i, wytypowanej w etapie 2, należy utworzyć oddzielną funkcję niesprawności wybierając ze zbioru U, w wyniku analizy technicznej dotyczącej diagnozowanego systemu, tylko te uszkodzenia, które mogą wystąpić dla danej kombinacji symptomów. Funkcję niesprawności dla każdej sygnatury określa zależność

$$F = \sum_{k=1}^{K} i \cdot f_k$$

(4)

przy czym

$$i = \begin{cases} 0 & \text{jeśli } f_k \text{ nie występuje dla danej sygnatury} \\ 1 & \text{jeśli } f_k \text{ występuje dla danej sygnatury} \end{cases}$$

(5)

Wnioskowanie diagnostyczne może być obarczone niepewnością wynikającą z niedoskonałości (niepewności, niepełności, niedokładności) uzyskanej wiedzy. W przypadku systemów skr mamy do czynienia z sytuacją, w której sygnatury w postaci kombinacji symptomów mogą wskazywać na różne uszkodzenia. Jedną z najbardziej znanych metod przetwarzania wiedzy niepewnej jest wnioskowanie probabilistyczne, nazywane także wnioskowaniem bayesowskim [1, 2]. Jest to metoda przetwarzania wiedzy wykorzystująca rachunk prawdopodobieństwa, w której poszczególnym stwierdzeniom przypisuje się prawdopodobieństwo ich prawdziwości. Prawdopodobieństwa warunkowe $P(f_k | s_j)$ wystąpienia uszkodzenia f_k przy zaobserwowanym symptomie s_j można wyznaczyć korzystając ze wzoru Bayesa

$$P(f_k | s_j) = \frac{P(f_k)P(s_j | f_k)}{\sum_{i=1}^{K} P(f_i)P(s_j | f_i)}$$

(6)

gdzie K – liczba uszkodzeń.
Stwierdzenie występowania uszkodzenia w systemie następuje przy zgodności stanu symptomów z sygnaturą danego uszkodzenia, wówczas

$$P(f_k \mid s_1, s_2, \ldots, s_j) = \frac{P(f_k) P(s_1, s_2, \ldots, s_j \mid f_k)}{\sum_{i=1}^{K} P(f_i) P(s_1, s_2, \ldots, s_j \mid f_i)} \quad (7)$$

gdzie K – liczba możliwych uszkodzeń, J - liczba elementów sygnatury uszkodzenia.

Przy założeniu niezależności symptomów wzór (7) można przedstawić w postaci

$$P(f_k \mid s_1, s_2, \ldots, s_j) = \frac{P(f_k) P(s_1 \mid f_k) P(s_2 \mid f_k) \cdots P(s_j \mid f_k)}{\sum_{i=1}^{K} P(f_i) P(s_1 \mid f_i) P(s_2 \mid f_i) \cdots P(s_j \mid f_i)} \quad (8)$$

gdzie: K – liczba możliwych uszkodzeń, J - liczba elementów sygnatury uszkodzenia.

Jeśli nie musi zajść n-ty symptom, zgodnie z sygnaturą uszkodzenia, wówczas do wzoru (8) wstawiamy

$$P(s_n \mid f_k) = 1 - P(s_n \mid f_k) \quad (9)$$

W równaniu (8) lewa strona jest poszukiwaną wartością prawdopodobieństwa a posteriori, zaś prawa zależy od odpowiednich prawdopodobieństw a priori, których wartość prze-ważnie jest nieznana. W problemach technicznych wartości tych prawdopodobieństw można oszacować w wyniku estymacji. Tak więc, wartości prawdopodobieństw $P(f_k)$ w równaniu (8) mogą być estymowane na podstawie danych z próby losowej

$$P(f_k) = \frac{n_{f_k}}{n_f} \quad (10)$$

gdzie: n_{f_k} – liczba uszkodzeń f_k, n_f – liczba wszystkich zarejestrowanych uszkodzeń.

Natomiast w przypadku szacowania prawdopodobieństwa $P(s_j|f_k)$ można posłużyć się za- leżnością

$$P(s_j \mid f_k) = \frac{n_{s_j \wedge f_k}}{n_{f_k}} \quad (11)$$

gdzie: $n_{s_j \wedge f_k}$ – liczba wystąpień symptomów s_j dla uszkodzeń f_k, n_{f_k} – liczba uszkodzeń f_k.

Uzyskanie poprawnych wyników dla estymowanych parametrów wymaga posiadania od- powiednio dużego zbioru danych eksperymentalnych.
3. METODA DIAGNOZOWANIA SYSTEMÓW SRK
WYKORZYSTUJĄCA WNIOSKOWANIE
PROBABILISTYCZNE

Rozwój przemysłu motoryzacyjnego i związany z tym wzrost liczby pojazdów samocho- dowych, a także zwiększenie ruchu kolejowego, wymusza potrzebę zapewnienia beziec-
czeństwa na przejazdach kolejowych. W celu ochrony użytkowników dróg kołowych,
przed zagrożeniami wynikającymi z ruchu kolejowego, budowane są systemy zabezpie-
czenia przejazdów, w tym m.in. systemy samoczynnej sygnalizacji przejazdowej (SSP) [6].
Przykładowe rozmieszczenie urządzeń SSP dla przejazdu kategorii B zabudowanego na
linii dwutorowej przedstawiono na rysunku 1.

Rys. 1. Wyposażenie przejazdu kategorii B z systemem SSP

Źródło: opracowanie własne.

W stanie oczekiwania światła tarcz ostrzegawczych TOP, światła sygnalizatorów dro-
gowych S, światła latarek zapór są wygaszone, wyłączony jest sygnał dźwiękowy, a zapo-
ry znajdują się w położeniu pionowym. Po przejechaniu pierwszej osi pociągu nad czujni-
kiem koła załączającym ostrzeganie (C1, C4, C11, C14) rozpoczyna się zainicjowanie
ostrzegania. Następuje włączenie sygnalizatorów drogowych S i akustycznych, a następnie
podanie sygnału na tarczach TOP, informującego o sprawności systemu przejazdowego dla
wybranego kierunku jazdy. Kolejną czynnością jest zamknięcie zapór. Wjazd pierwszego
koła pociągu na pierwszy czujnik drugiej strefy (C2, C3, C12, C13) powoduje wyłączenie
sygnału akustycznego. Po opuszczeniu przez pociąg strefy przejazdu następuje wygaszenie
świateł na tarczy ostrzegawczej przejazdowej, podniesienie zapór oraz wyłączone zostają
sygnalizatory drogowe.

System SSP w przypadku wystąpienia sytuacji awaryjnych musi zapewnić beziec-
ństwo ruchu. Dlatego też wszystkie usterki systemu SSP zostały podzielone na „usterki ka-
tegorii I”, które zagrażają bezpośrednio bezpieczeństwu ruchu i „usterki kategorii II” nie
zagrażające bezpieczeństwu. Wystąpienie usterki I kategorii wymusza działanie systemu
polegające na ograniczeniu prędkości pociągu. Obniżona prędkość pozwala na bezpieczne
zatrymanie pociągu, w przypadku pojawienia się przeszkody na przejeździe.

Weryfikacja metody obejmowała opracowanie sygnatur i funkcji niesprawności dla:
1. usterek kategorii I:
 – usterek czujnika koła C1, C4, C11 lub C14 załączającego ostrzeganie,
 – usterek napędu rogatkowego N1, N2, N3 lub N4,
 – usterek sygnalizatora drogowego S1, S2, S3 lub S4,
 – usterek interfejsu SSP z urządzeniami stacjonarnymi.

2. usterek kategorii II:
 – usterek czujnika koła C2, C3, C12 lub C13,
 – usterek światła drga napędu rogatkowego N1, N2, N3 lub N4,
 – usterek światła białego / pomarańczowego tarczy TOP1, TOP2, TOP3 lub TOP4,
 – innych usterek.

Jako przykład zaprezentowano usterek czujnika koła C1, C4, C11 lub C14 załączającego ostrzeganie. W tablicy 1 przedstawiono symptomy uszkodzeń, zaś w tablicy 2 możliwe uszkodzenia.

Tablica 1

Lista symptomów dla czujników koła C1, C4, C11 i C14

<table>
<thead>
<tr>
<th>Oznaczenie</th>
<th>Opis symptomu</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁</td>
<td>Niezgodność zmian sygnałów „sys” (RSR123) lub liczników „sys” i kierunku „Ri” (RSR180)</td>
</tr>
<tr>
<td>s₂</td>
<td>Jednoczesność wystąpienia zbocz sygnałów sysA oraz sysB</td>
</tr>
<tr>
<td>s₃</td>
<td>Nieprawidłowa sekwencja sygnałów „sys” - brak zachodzenia (pokrycia) sygnałów sysA i sysB</td>
</tr>
<tr>
<td>s₄</td>
<td>Zbyt długo trwający sygnał sysB</td>
</tr>
<tr>
<td>s₅</td>
<td>Wykrycie obecności pojazdu przez czujnik strefy przejazdowej przy braku pojazdu</td>
</tr>
<tr>
<td>s₆</td>
<td>Zbyt długo trwający sygnał sysA</td>
</tr>
<tr>
<td>s₇</td>
<td>Impulsowanie sygnałów „sys”</td>
</tr>
<tr>
<td>s₈</td>
<td>Brak zbliżania się osi dla kontrolowanej strefy</td>
</tr>
</tbody>
</table>

Tablica 2

Lista uszkodzeń czujników koła C1, C4, C11 i C14

<table>
<thead>
<tr>
<th>Oznaczenie</th>
<th>Opis uszkodzenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>f₁</td>
<td>Uszkodzenie karty wartościującej</td>
</tr>
<tr>
<td>f₂</td>
<td>Postój koła pojazdu nad czujnikiem</td>
</tr>
<tr>
<td>f₃</td>
<td>Brak ciągłości kabla czujnika</td>
</tr>
<tr>
<td>f₄</td>
<td>Zajęcie strefy środkowej przejazdu (przy wolnej strefie najazdowej)</td>
</tr>
<tr>
<td>f₅</td>
<td>Złe wyregulowany czujnik</td>
</tr>
<tr>
<td>f₆</td>
<td>Niepewne połączenia czujnika</td>
</tr>
</tbody>
</table>

Analiza techniczna systemu SSP, w tym eliminacja kombinacji symptomów, które nie są związane z powstawaniem uszkodzeń, pozwoliła na powiązanie sygnatur oraz uszkodzeń i zbudowanie funkcji niesprawności: \(V_1, ..., V_7 = f_1, V_8 = f_1 + f_2 + f_3, V_9, ..., V_{15} = f_1, V_{16} = f_4, V_{17} = f_1 + f_3 + f_4, V_{18}, ..., V_{24} = f_1, V_{25} = f_1 + f_2 + f_3, V_{26}, ..., V_{32} = f_1, V_{33} = f_6, V_{34} = f_5 \). Jak wynika z przeprowadzonej analizy większość sygnatur powiązana jest z pojedynczymi uszkodzeniami, a tym samym zaobserwowanie tych kombinacji symptomów umożliwia jednoznaczne wskazanie rodzaju uszkodzenia. Niestety, dla sygnatur: \(V_8, V_{17} \) i \(V_{25} \) nie można jednoznacznie stwierdzić, które uszkodzenie wystąpiło w systemie. Dlatego też, korzystając ze wzoru (8), możemy obliczyć wartość prawdopodobieństwa wystąpienia uszkodzenia.
pod warunkiem zaobserwowania danej kombinacji symptomów, dla każdego z uszkodzeń wchodzących w skład funkcji niesprawności. Niezbędne jest jednak posiadanie wartości prawdopodobieństw

a priori

stanowiących prawą część równania (8), które można oszacować na podstawie danych eksperymentalnych. W tym celu wykorzystane zostały zapisy przechowywane w logach systemu SSP. Próba losowa dotyczy danych pobranych z trzech obiektów z okresu jednego roku. Wyniki tej analizy zostały przedstawione w tablicy 3.

Tablica 3

<table>
<thead>
<tr>
<th>n_{f_k}</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_4</td>
<td>2</td>
<td>105</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_6</td>
<td>2</td>
<td>123</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>s_8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P(f_k)$</th>
<th>0,015</th>
<th>0,839</th>
<th>0,0449</th>
<th>0,0075</th>
<th>0,0749</th>
<th>0,0187</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(s_j</td>
<td>f_k)$</td>
<td>s_1</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>0,6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_3</td>
<td>0,5</td>
<td>0,4688</td>
<td>0,6667</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_5</td>
<td>0,5</td>
<td>0,5491</td>
<td>0,6667</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s_8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Korzystając z wartości $P(f_k)$ i $P(s_j|f_k)$ zawartych w tablicy 3 można wyznaczyć prawdopodobieństwo wystąpienia uszkodzeń wchodzących w skład funkcji niesprawności dla sygnatur: V_6, V_{17} i V_{25}. Na przykład dla V_6 wyniesie ono odpowiednio: $P(f_1|V_6) = 0,0030$, $P(f_2|V_6) = 0,9439$, $P(f_3|V_6) = 0,0531$. Dla sygnatur V_{17} uzyskano następujące wartości: $P(f_1|V_{17}) = 0,0022$, $P(f_2|V_{17}) = 0,9587$, $P(f_3|V_{17}) = 0,0391$, natomiast dla V_{25} wartości: $P(f_1|V_{25}) = 0,0024$, $P(f_2|V_{25}) = 0,9132$, $P(f_3|V_{25}) = 0,0844$. Z przedstawionej analizy wynika, że we wszystkich przypadkach najbardziej prawdopodobne było uszkodzenie f_2.

4. PODSUMOWANIE

Systemy srk pełnią istotną rolę w zagwarantowaniu sprawnego przemieszczania się osób oraz przewozu ładunków. Dlatego też niezbędne jest zapewnienie przez nie wysokiego poziomu niezawodności i bezpieczeństwa. Niestety urządzenia i systemy srk, tak jak inne obiekty techniczne, ulegają uszkodzeniom. Występowanie uszkodzeń wymaga przeprowadzania odnowy systemu, przy czym terminem tym określa się sposób przywrócenia syste-
PROBABILISTIC METHOD FOR RAILWAY TRAFFIC CONTROL SYSTEMS DIAGNOSIS

Summary: Railway traffic control systems have a key role in ensuring the smooth operation of railway traffic. Therefore, the basic requirement, in addition to the implementation of necessary system functions, is continuous striving for ensuring the high level of reliability. Contemporary development of railway traffic control systems is associated with the application of modern information and communication technologies, which makes it possible to extend the functionality of these systems by the logging events and self-diagnostics. However, there are no standards in this area, which considerably complicates the unification of scope and types of acquired diagnostic data as well as their analysis. This, of course, has a negative impact on the maintenance of the systems technical reliability. The authors of the paper have noticed this important problem and have proposed a new diagnostic method for railway traffic control systems, which is based on a probabilistic inference. They also verified the developed diagnostic method by testing it on the level crossing protection system. The obtained results have proved the correctness of the adopted railway traffic control systems diagnosing concept.

Keywords: railway traffic control systems, diagnosis, probabilistic method